UUW19 Final DWMP data tables addendum

October 2023

This document provides the required explanatory notes and commentary where data differs between the DWMP and the business plan submission. It responds to Ofwat's email of 27 July 2023 "Updates on DWMP tables, business plan table queries, PCD worked example and WINEP PR19 reconciliation model."

Water for the North West

Contents

1.	Fina	I DWMP data tables addendum	3
	1.1	Introduction	3
	1.2	Structure	3
2.	Ove	rarching changes	4
3.	Out	comes	5
	3.1	Pollution	5
	3.2	Compliance at wastewater treatment works	6
	3.3	Sewer collapses	7
	3.4	Internal sewer flooding	8
	3.5	Storm overflows	9
	3.6	External sewer flooding	11

1. Final DWMP data tables addendum

1.1 Introduction

On 31 May 2023, United Utilities Water (UUW) published our first Drainage and Wastewater Management Plan (DWMP) which sets out how we intend to maintain robust and resilient drainage and wastewater systems now and in the future. We developed the plan in partnership with customers and stakeholders across the region to create a stronger, greener and healthier North West. You can view our DWMP on our corporate website¹.

The DWMP forecasts potential expenditure between 2025 and 2050 to ensure that we can achieve the planning objectives and statutory requirements that are set out in the plan. The proposed investment is comprised of an optimised programme addressing performance improvements of non-statutory measures, plus UUW's Water Industry National Environment Programme (WINEP) January 2023 submission and our 25 year plan to achieve the targets set out in the Government's Storm Overflow Discharge Reduction Plan (SODRP).

Since publication of the DWMP in May 2023, UUWs been finalising our business plan submission for Price Review 2024. The DWMP has formed the foundation of our wastewater ambitions for AMP8, and over the course of the last few months, further work has been undertaken to identify opportunities to support our vision and ambitions over the next investment cycle. This has naturally resulted in variations in data between our business plan submission and the DWMP. In particular changes to WINEP drivers and our accelerated WINEP investment have altered the figures as set out in the final DWMP data tables.

On 27 July 2023, UUW received an email from the Ofwat PR24 mailbox titled 'Updates on DWMP tables, business plan table queries, PCD worked example and WINEP PR19 reconciliation model' detailing that revised DWMP data tables to accompany the business plan submission are not expected. However, it was expected that an explanatory note would be provided where data differs between the DWMP and the business plan submission.

1.2 Structure

The purpose of this addendum is to provide an overview of any material changes between the DWMP and business plan data tables. The structure of this document is as follows:

- Section 2 provides an overview of over-arching changes since May 2023; and
- Section 3 presents the data as submitted as part of the DWMP data tables, with the revised data in the business plan submission, along with reasons and justifications for the changes.

¹ <u>https://www.unitedutilities.com/corporate/about-us/our-future-plans/Our-long-term-plans/dwmp-publication-may-2023/</u>

2. Overarching changes

Since the DWMP publication in May 2023, there have been a number of ongoing activities as part of preparing our final business plan submission that have resulted in changes to data profiles presented in the final DWMP data tables. These changes impact both performance and expenditure forecasts. A number of these changes can be summarised through over-arching activities that are applicable to the majority of data lines, whereas others are due to a unique reason (section 3).

The following over-arching changes impact all financially related data lines within the DWMP final data tables:

- Internal and external benchmarking and cost assurance reviews UUW takes an iterative approach in refining costs. Initial estimates have been revised, supported by benchmarking, market testing and scrutiny panels, in addition to reviewing the scale of programmes such as the WINEP, comparative benchmarking from early DWMP and APR submission data and various third party assurance activities. This has resulted in a reduction of overhead cost allocation from 15% to 7%, plus a further reduction to capital programme costs of 2.5%. More information on how we deliver efficient costs can be found in Chapter 8 of the business plan submission.
- Price base 2020/21 uplifted to 2022/23 the DWMP was developed and reported using price base 20/21 in line with regulator expectations. This is also true for the WINEP. As our business plan submission for PR24 is submitted in price base 22/23, an uplift factor of 1.1277 must be applied to all costs in the final DWMP data tables in order to be comparative to any like-for-like costs in the PR24 tables.

The following changes impact all storm overflows outcome lines specifically:

 WINEP drivers and Accelerated WINEP development – the final DWMP was based on UUW's WINEP submission from January 2023. Following publication of the final DWMP in May 2023, continued development of the WINEP, including a number of changes to drivers and also our accelerated programme, has resulted in some storm overflow expenditure shifting forward to AMP7. This has consequently also altered the outcome profiles over the remaining years. The impact of these changes can be seen in Section 3.5.

3. Outcomes

3.1 Pollution

Table 1: Data tables for pollution outcomes highlighting DWMP and LTDS forecasts as well as commentary addressing reasons for any changes

D	WMP	LTD	S																
			AMP7			AN	1P8					AM	IP9			AMP10	AMP11	AMP12	
Outcome	Unit	Line referenc e	Forecast 2024-25	2025- 26	2026- 27	2027- 28	2028- 29	2029- 30	Total AMP8 (2025- 2030)	2030- 31	2031- 32	2032- 33	2033- 34	2034- 35	Total AMP9 (2030- 35)	Total AMP10 (2035- 40)	Total AMP11 (2040- 45)	Total AMP12 (2045- 50)	Total 25 yr
	nr	1b	19.50	17.55	16.35	16.35	16.35	16.35	82.93	11.98	11.97	11.97	11.97	11.97	59.87	59.87	59.90	56.04	318.62
Pollution incidents		LS2.12	16.03	16.03	15.69	14.80	13.79	12.02	72.33	11.72	11.63	11.63	11.63	11.63	58.24	58.08	58.08	54.36	301.09
– base ¹		Reasons for change: The data presented in LS2.12 differs to the DWMP 1b due to a performance commitment level (PCL) revision in AMP8 as UUW is striving to meet a more am level of performance from base expenditure. For the completion of DWMP data tables a static value for normalisation of pollution incidents based on current sewer length was u converting total pollution incidents to incidents per 10,000km of sewer length. Following OFWAT guidance, this normalisation of total pollution was revised to match the method issued for OUT5 sewer length.															was used in		
	nr	1c	19.50	16.26	16.19	16.10	16.03	15.96	80.53	11.54	11.52	11.51	11.50	11.49	57.55	57.36	57.33	52.47	305.23
Pollution		LS1.12	16.03	16.03	15.69	14.80	13.79	12.02	72.33	11.72	11.63	11.63	11.63	11.63	58.24	58.08	58.08	54.36	301.09
incidents – post enhancem ent ²		expendit expendit intervent completi 10,0000k	ions, these l on of DWMF	nance fore nally, while benefits ar P data tabl length. Fo	casts for st we full ^s e difficul es a stati llowing C	AMP8 in y expect t to fully c value fo FWAT gu	LS1.12 an pollution quantify. or normal iidance, t	re aligned benefit t Storm ov lisation of his norm	l to the pro hrough sto verflow int f pollution alisation of	pposed PCl orm overflo erventions incidents l f total poll	L which are ow investm will reduc based on c	e primarily nent and re ce consent current sev	^r driven by eduction ir ed <mark>spills,</mark> ra ver length	operation surface ather tha was usec	nal risks (e water run n be aimee l in conver	e.g. sewer b off entering d at tackling ting total p	lockages), n g the combin g pollution e ollution inci	nanaged the ned system events. For idents to inc	rough base via flooding the

¹ Number of category 1-3 pollution incidents per 10,000km of wastewater network (excluding impact of AMP8 onwards enhancements)

² Number of category 1-3 pollution incidents per 10,000km of wastewater network (including impact of AMP8 onwards enhancements)

3.2 Compliance at wastewater treatment works

Table 2: Data tables for wastewater compliance outcomes highlighting DWMP and LTDS forecasts as well as commentary addressing reasons for any changes

DWM	MP	LTDS	5																
			AMP7			A	MP8					A	MP9			AMP10	AMP11	AMP12	
Outcome	Unit	Line referenc e	Forecast 2024-25	2025- 26	2026- 27	2027- 28	2028- 29	2029- 30	Total AMP8 (2025- 2030)	2030- 31	2031- 32	2032- 33	2033- 34	2034- 35	Total AMP9 (2030- 35)	Total AMP10 (2035- 40)	Total AMP11 (2040- 45)	Total AMP12 (2045- 50)	Total 25 yr
	%	2b	98.66	99.00	99.00	99.00	99.00	99.00	99.00	99.00	96.94	96.25	95.56	94.87	94.87	91.43	87.99	84.56	84.56
Compliance	70	OUT2.1 4	100.00	100.0 0	100.00	99.74	99.52	98.33	98.33	97.62	97.62	97.62	97.82	97.82	97.82	97.82	97.82	97.82	97.82
at WwTWs – base ⁴		enhanc anticipa numeri on the	s for change ement case ated to still h c permits. Tl AMP8 progr e same ope>	will be gr nave desc ne level c amme cu	anted and criptive cou of enhance mulative l	I therefore nsents, so ment expo penefit. As	e contribut the impac enditure p UUW has	e to this n t is based redicted fo	neasure. Th on the prec or AMP9 in	ere are pr liction tha table LS4.	ojects at 1 t the level 50 is simila	.2 sites ide of perform ar to that f	entified wi mance del for AMP8,	thin the su ivered from but as pen	ipply and do m base will the guidar	emand prog be calculate nce the table	gramme. Of ed based or e for years 2	the 12 site 10 of 12 si 2030-2035	s, 2 are tes having are based
Compliance	%	2c	98.66	99.40	99.40	99.42	99.43	99.44	99.44	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
at WwTWs - post		OUT4.1 09	100.00	100.0 0	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
enhancemen t ⁵		include deman DWMP		ption tha e is antic	t our enha ipated rat	ncement her than b	case is sup ase expen	ported th diture. Th	erefore the is enhancer	performa nent perfo	nce from l ormance a	base is less	s in years v	when whe	re enhance	ment perfo	rmance fro	m UUW's sı	ipply and

⁴ WwTW compliance with permit conditions from base expenditure (excluding impact of AMP8 onwards enhancements)

⁵ WwTW compliance with permit conditions following enhancement expenditure (including impact of AMP8 onwards enhancements

3.3 Sewer collapses

		DWMP		S																
				AMP7			AN	/IP8					AN	ЛР9			AMP10	AMP11	AMP12	
	Outcome	Unit	Line reference	Forecast 2024-25	2025- 26	2026- 27	2027- 28	2028- 29	2029- 30	Total AMP8 (2025- 2030)	2030- 31	2031- 32	2032- 33	2033- 34	2034- 35	Total AMP9 (2030- 35)	Total AMP10 (2035- 40)	Total AMP11 (2040-45)	Total AMP12 (2045- 50)	Total 25 yr
		nr per	8b	13.07	12.88	12.68	12.48	12.28	12.09	62.40	11.25	11.30	11.34	11.39	11.43	56.70	57.81	58.91	59.75	295.58
		1000km	LS2.20	13.07	12.94	12.80	12.67	12.54	12.41	63.36	12.36	12.30	12.26	12.19	12.14	61.24	59.86	58.49	57.14	300.09
8b	Sewer collapses – base ⁹		per 1000km trajectory te	of sewer. T owards the rmalisation	he DWM DWMP Fነ	P optimis /50 positi	er profile on is a m	showed	improven tic deliver	nent in sev y profile a	wer collag and have	ose perfo therefore	rmance for smoothe	ollowed b ed the pro	y deterio ofile. For t	ration. We he comple	e now inste etion of DW	r 2050 positio ad believe tha /MP data table vised to matc	t a stable, lir es a static va	near lue was

Table 3: Data tables for sewer collapses outcomes highlighting DWMP and LTDS forecasts as well as commentary addressing reasons for any changes

⁹ Number of sewer collapses

3.4 Internal sewer flooding

Table 4: Data tables for internal sewer flooding outcomes highlighting DWMP and LTDS forecasts as well as commentary addressing reasons for any changes

D۱	WMP	Ľ	TDS																
			AMP7			AN	MP8					AI	MP9			AMP10	AMP11	AMP12	
Outcome	Unit	Line referenc e	Forecast 2024-25	2025- 26	2026- 27	2027- 28	2028- 29	2029- 30	Total AMP8 (2025- 2030)	2030- 31	2031- 32	2032- 33	2033- 34	2034- 35	Total AMP9 (2030- 35)	Total AMP10 (2035- 40)	Total AMP11 (2040- 45)	Total AMP12 (2045- 50)	Total 25 yr
	nr	9b	2.88	2.16	2.13	2.12	2.10	2.08	10.59	1.97	2.02	2.06	2.10	2.15	10.30	11.39	12.50	13.54	58.31
		LS2.4	2.88	2.32	2.23	2.15	2.07	1.99	10.76	1.95	1.92	1.90	1.89	1.88	9.54	9.40	9.40	9.40	48.50
sewer flooding – base ¹¹		area. DWM as per accom	P optimiser Ofwat's gui nmodate gro ables, we ha	output sho dance for owth, so th	ows a perf OUT2, tha at perform	ormance o t compani nance doe	deteriorat es should s not det	ion over th l assume th eriorate", v	ne course of hat "they wi we have sou	AMP9 and Il receive of Ight to stro	d beyond a efficient co etch ourse	as a result ost allowar lves regare	of heighte nces to ado ding perfor	ned risk di Iress issue mance the	riven by clin s such as ne at can be de	nstrates UU nate change etwork reinfe elivered fron ver connection	and popula orcement re n base. The	tion growth equired to refore, in the	. However, e PR24
Internal	nr	9с	2.88	2.16	2.13	2.11	2.09	2.06	10.55	1.84	1.83	1.82	1.80	1.79	9.08	8.82	8.35	8.13	44.93
sewer flooding -		LS1.4	2.88	2.32	2.23	2.14	2.05	1.96	10.69	1.72	1.70	1.68	1.67	1.65	8.42	7.93	7.28	6.87	41.19
post enhancem ent ¹²		assum delive ourse	nes a step ch ry profile. Fi	ange to th urther, in t R19 busine	ie environi he PR24 d ess plan su	mentally-a ata tables Ibmission.	adjusted f , we have Following	rontier lev stretched g OFWAT g	el of perfor ourselves s guidance, th	mance is n uch that o	nade in the our FY30 P	e first year CL is beyon	of AMP8, d the envi	however, ronmenta	the profile l lly adjusted	rs to the DW has been sm frontier and the metho	loothed to r d aligned wi	eflect a mor th the targe	e realistic t we set

¹¹ Total number of internal sewer flooding incidents / escapes per 10,000 sewer connections (excluding AMP8 onwards enhancements)

¹² Total number of internal sewer flooding incidents / escapes per 10,000 sewer connections (including AMP8 onwards enhancement expenditure) (see note 9 on Line definitions tab)

3.5 Storm overflows

Table 5: Data tables for storm overflows outcomes highlighting DWMP and LTDS forecasts as well as commentary addressing reasons for any changes

	DWMP	LTDS																	
			AMP7			AM	IP8					AN	1P9			AMP10	AMP11	AMP12	
	Outcome	Unit	Forecast 2024-25	2025- 26	2026- 27	2027- 28	2028- 29	2029- 30	Total AMP8 (2025- 2030)	2030- 31	2031- 32	2032- 33	2033- 34	2034- 35	Total AMP9 (2030- 35)	Total AMP10 (2035- 40)	Total AMP11 (2040- 45)	Total AMP12 (2045-50)	Total 25 yr
	Storm overflows -		1403	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401
4a	more than 10	nr	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453
-70	<mark>spills</mark> per year – baseline ¹⁵																	our Defra stori Diphasing deta	
	Storm overflows -		1402	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401	1401
4b	more than 10	nr	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453	1453
	spills per year – base ¹⁶										•						-	our Defra storr	
				i i														o phasing deta	
	Storm overflows - more than 10 spills per year -		1402	1401	1401	1401	1069	1014	1014	1013	1013	1013	1013	831	831	608	313	0	0
4c		nr	1453	1415	1351	1184	1072	1054	1054	1054	1054	1054	1054	875	875	654	364	0	0
	post enhancement ¹⁷	nr									•						-	our Defra storr phasing deta	
	Storm overflows		483	459	459	459	459	459	459	459	459	459	459	459	459	459	459	459	459
5a	(high priority) -	nr	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450
54	ecological harm –				-						•						-	our Defra storr	
	baseline ¹⁸			r ·		1			i			· ·		<u> </u>	ŕ –		1	o phasing deta	
	Storm overflows		460	459	459	459	459	459	459	459	459	459	459	459	459	459	459	459	459
5b	(high priority) - ecological harm –	nr	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450
	base ¹⁹			_							•						-	our Defra stori phasing deta	
	Storm overflows		460	484	484	484	342	300	300	300	300	300	300	141	141	60	28		0
	(high priority) -		450	450	450	450	450	252	252	252	252	252	252	109	110	56	0	0	0
5c	ecological harm - post enhancement ²⁰	nr	Reasons fo	or change:	Changes i	n WINEP o	drivers for	a numbe	er of storm	overflows	, plus UUW	/'s accelera	ated WINE				-	our Defra storr o phasing deta	

¹⁴ totex

¹⁵ Number of storm overflows with more than 10 spills per year.

¹⁶ Number of storm overflows with more than 10 spills per year (excluding impact of AMP8 onwards enhancement).

¹⁷ Number of storm overflows with more than 10 <mark>spills</mark> per year (including impact of AMP8 onwards enhancement).

¹⁸ Number of high priority overflows causing ecological harm a year

¹⁹ Number of high priority overflows causing ecological harm a year (excluding impact of AMP8 onwards enhancement)

Final DWMP data tables addendum

		critews (AMP7		a year (includ	AM			mancemen	()		AM	P9			AMP10	AMP11	AMP12	
	Outcome	Unit	Forecast 2024-25	2025- 26	2026- 27	2027- 28	2028- 29	2029- 30	Total AMP8 (2025- 2030)	2030- 31	2031- 32	2032- 33	2033- 34	2034- 35	Total AMP9 (2030- 35)	Total AMP10 (2035- 40)	Total AMP11 (2040- 45)	Total AMP12 (2045-50)	Total 25 yr
	Storm overflows		483	459	459	459	459	459	459	459	459	459	459	459	459	459	459	459	459
6a	(all) - ecological	nr	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450
	harm – baseline ²¹		Reasons for priority. Th						commenta	ry, line 6a	is a replica	tion of line	5a as all st	orm overf	lows causi	ng ecologica	al harm are o	defined as hig	h
	Storm overflows		460	459	459	459	459	459	459	459	459	459	459	459	459	459	459	459	459
6b	(all) - ecological	nr	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450	450
	harm – base ²²		<u>Reasons fo</u> priority. Th						commenta	ry, line 6b	is a replica	tion of line	5b as all s	torm overf	lows causi	ng ecologica	al harm are	defined as hig	h
	Storm overflows		460	484	484	484	342	300	300	300	300	300	300	141	141	60	28	0	0
6c	(all) - ecological	nr	450	450	450	450	450	252	252	252	252	252	252	109	110	56	0	0	0
	harm - post enhancement ²³		Reasons for priority. Th						commenta	ry, line 6c i	s a replicat	tion of line	5c as all st	orm overfl	ows causii	ng ecologica	ll harm are o	lefined as hig	n
	Storm overflows -		106	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103
	designated		111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111
7a	bathing waters (coastal and inland) – baseline ²⁴	nr			-						•						-	our Defra storr o phasing deta	
	Storm overflows -		106	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103
-1.	designated		111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111
7b	bathing waters (coastal and inland) – base ²⁵	nr																our Defra stori phasing deta	
	Storm overflows -		106	103	103	103	88	78	78	78	78	78	78	0	0	0	0	0	0
	designated		111	105	95	83	78	72	72	72	72	72	72	0	0	0	0	0	0
7c	bathing waters (coastal and inland) - post enhancement ²⁶	nr									•						-	our Defra storr o phasing deta	

²⁰Number of high priority overflows causing ecological harm a year (including impact of AMP8 onwards enhancement)

²¹ Number of all overflows causing ecological harm a year

²² Number of all overflows causing ecological harm a year (excluding impact of AMP8 onwards enhancement)

²³ Number of all overflows causing ecological harm a year (including impact of AMP8 onwards enhancement)

²⁴ Number of overflows in designated bathing waters spilling more than 3 times per bathing season

²⁵ Number of overflows in designated bathing waters spilling more than 3 times per bathing season

²⁶ Number of overflows in designated bathing waters spilling more than 3 times per bathing season

3.6 External sewer flooding

Table 6: Data tables for external sewer flooding outcomes highlighting DWMP and LTDS forecasts as well as commentary addressing reasons for any changes

DWMP		LTDS																	
			AMP7			AN	/IP8					AN	MP9			AMP10	AMP11	AMP12	
Outcome	Unit	Line reference	Forecast 2024-25	2025- 26	2026- 27	2027- 28	2028- 29	2029- 30	Total AMP8 (2025- 2030)	2030- 31	2031- 32	2032- 33	2033- 34	2034- 35	Total AMP9 (2030- 35)	Total AMP10 (2035- 40)	Total AMP11 (2040-45)	Total AMP12 (2045- 50)	Total 25 yr
		11b	16.43	15.93	15.39	14.84	14.29	13.75	74.20	11.62	11.74	11.86	11.98	12.10	59.31	62.30	65.30	67.80	328.90
External Sewer	nr	LS2.5	15.66	15.20	14.76	14.41	14.11	13.72	72.20	13.20	12.67	12.17	11.66	11.14	60.84	55.70	55.70	55.70	300.14
Flooding – base ²⁷	Reasons for change: LS2.5 shows improved performance in comparison to DWMP 11b from base expenditure, forecasting stable performance from end of AMP9. We assu innovation, efficiencies in delivery from base and synergistic benefits resulting from enhancement investment in other areas will allow UUW to offset the deterioration in performance resulting from climate change and growth reported in our DWMP. Following OFWAT guidance, this normalisation of total external flooding was revised to ma methodology issued for OUT5, rather than using a static value for sewer connections as in the DWMP data tables.														in				
	nr	11bi	16.43	15.87	15.32	14.76	14.21	13.65	73.80	11.47	11.56	11.65	11.74	11.83	58.24	60.48	62.58	64.06	319.16
External Sewer		LS1.5	15.66	15.20	14.75	14.40	14.07	13.65	72.07	10.75	10.78	10.81	10.85	10.89	54.08	54.37	54.52	54.14	289.18
Flooding - post enhancement ²⁸		value for the sign	or sewer cor	nnections Ictions in	as in the sewer flo	DWMP d oding we	ata tables 've seen a	s. Addition as a result	nally to thi	is, since tl	ne DWMF	P was pub	lished UL	JW have i	revised ou	r forecasted	r OUT5, rathei d AMP8 startii l, customer av	ng position	to reflect

²⁷ Total number of internal sewer flooding incidents / escapes per 10,000 sewer connections (excluding AMP8 onwards enhancements)

²⁸ Total number of internal sewer flooding incidents / escapes per 10,000 sewer connections (including AMP8 onwards enhancement expenditure) (see note 9 on Line definitions tab)

United Utilities Water Limited Haweswater House Lingley Mere Business Park Lingley Green Avenue Great Sankey Warrington WA5 3LP unitedutilities.com

Water for the North West